
Accepted for publication in J. Functional Programming 1

No value restriction is needed
for algebraic effects and handlers

Ohad Kammar�†
University of Cambridge Computer Laboratory and

University of Oxford Department of Computer Science, England
and

Matija Pretnar†
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Abstract

We present a straightforward, sound, Hindley-Milner polymorphic type system for algebraic effects
and handlers in a call-by-value calculus, which, to our surprise, allows type variable generalisation of
arbitrary computations, and not just values. We first recall that the soundness of unrestricted call-by-
value Hindley-Milner polymorphism is known to fail in the presence of computational effects such as
reference cells and continuations, and that many programming examples can be recast to use effect
handlers instead of these effects. After presenting the calculus and its soundness proof, formalised in
Twelf, we analyse the expressive power of effect handlers with respect to state effects. We conjecture
handlers alone cannot express reference cells, but show they can simulate dynamically scoped state,
establishing that dynamic binding also does not need a value restriction.

1 Introduction

The following OCaml example (Leroy, 1992) demonstrates the problematic interaction
between Hindley-Milner polymorphism, which increases code reuse, and computational
effects, such as reference cells, in a call-by-value language:

let r = ref [] in (∗ generalise r ∶ ∀α.α list ref ∗)
r ∶= [()]; (∗ specialise α ∶= unit ∗)
true ∶∶ !r (∗ specialise α ∶= bool ∗)

A naı̈ve type inference algorithm would assign the type α list ref to the term ref [].
Unrestricted, it would assign to r the type scheme ∀α.α list ref. But doing so allows us
to instantiate r with the unit type α ∶= unit to store the singleton list with the unit value,

� Supported by the European Research Council grant ‘events causality and symmetry — the
next-generation semantics’, and the Engineering and Physical Sciences Research Council grant
EP/N007387/1 ‘quantum computing as a programming language’.

† The material is based upon work supported by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF under Award No. FA9550-14-1-0096.

2 O. Kammar and M. Pretnar

and then to instantiate r with the boolean type α ∶= bool. The result is a list whose second
element is the unit value, but appears to the type system as a list of booleans.

The current way to avoid this well-known unsound behaviour (Pierce, 2002; Harper
& Lillibridge, 1993b; Rémy, 2015) is to enforce a value restriction: the inference al-
gorithm will generalise the type variables only in value terms that cannot be reduced
further (Wright, 1995). While this restriction can be weakened to allow some computa-
tion (Garrigue, 2004), it still rules out sound pure programs:

let id = (fun f ↦ f) (fun x↦ x) in (∗ id is not polymorphic ∗)
id (id) (∗ type error ∗)

The problem only arises when all three components are present: computational effects,
polymorphism, and call-by-value evaluation order. Without effects, Milner’s original cal-
culus soundly integrates call-by-value with type inference (Milner, 1978). Without poly-
morphism, computational effects behave predictably in call-by-value languages like ML,
as opposed to call-by-name languages like Haskell, which require additional features such
as monads to make effects predictable. Without call-by-value, Leroy (1993) combines
computational effects with polymorphism without restriction. Leroy’s language has two
constructs for sequencing: a call-by-name polymorphic construct let x = c1 in c2 in which
c1 is re-executed whenever it is specialised in c2, and a call-by-value monomorphic con-
struct do x← c1 in c2 in which c1 is only evaluated once, but its type is not generalised.
The situation is identical in the Haskell programming language, from which we borrow
this notation.

Programming with algebraic effects and handlers (Bauer & Pretnar, 2015) is a new
approach to structuring functional programs with computational effects. The programmer
declares a collection of algebraic effect operations with which she structures her effectful
code. Then, separately, she defines effect handlers that implement these abstract operations.
Bauer & Pretnar’s Eff programming language is a strict (i.e., call-by-value) functional lan-
guage with Hindley-Milner polymorphism, in which all computational effects are treated
as algebraic effects that can be handled. As Eff combines the three problematic components
(strictness, polymorphism, effects), it currently imposes the standard value restriction on
the programmer.

In this paper, we show that if only algebraic effects and handlers are present, no value
restriction is necessary. We present a straightforward sound Hindley-Milner polymorphic
type system for a call-by-value language that incorporates computational effects in the form
of algebraic effects and their handlers. In the given language, we can assign a polymorphic
type to x in do x← c1 in c2 not only if c1 is a pure computation, like in the id example above,
but also if c1 calls effects. Keep in mind that the language is strict, so c1 gets evaluated only
once.

In order to simplify the presentation, we present a type system without its associated
complete inference algorithm. Doing so decouples the algorithmic concerns of finding
principal types and its complexity from the semantic concern for soundness. As first-class
polymorphism typically makes type inference undecidable (Wells, 1999), our type system
uses ML-style polymorphism.

No value restriction is needed for algebraic effects and handlers 3

An important point of difference between our calculus and Bauer & Pretnar’s Eff is
the treatment of effect instances (Bauer & Pretnar, 2015, 2014; Pretnar, 2014). Instances
provide dynamic generation of effect names, increasing the modularity of effectful code.
We do not know how to combine instances with polymorphism, and so we do not advocate
to lift the value restriction from Eff .

The rest of the paper is structured as follows. In Sec. 2 we review handlers as a program-
ming abstraction through an idealised core calculus of algebraic effects and handlers, and
demonstrate its use by simulating global state. In Sec. 3 we give a type-and-effect system
to the core calculus and sketch the proof of its soundness. We formalized the proof in the
Twelf proof assistant (Pfenning & Schürmann, 1999), extending Bauer & Pretnar’s (2014)
existing formalization of Eff ’s core calculus1 In Sec. 4 we evaluate our type system and
discuss its expressiveness with respect to mutable references and dynamically scoped state.
In Sec. 5 we summarise and elaborate on related work. In Sec. 6 we conclude.

2 Handlers of algebraic effects

Algebraic effects are an approach to computational effects based on a premise that im-
pure behaviour arises from a set of operations such as get and set for mutable store,
read and print for interactive input and output, or raise for exceptions (Plotkin & Power,
2003). This approach naturally gives rise to handlers not only of exceptions, but of any
other effect, yielding a novel programming abstraction that, amongst others, can capture
backtracking, co-operative multi-threading, Unix-style stream redirection, and delimited
continuations (Plotkin & Pretnar, 2013; Bauer & Pretnar, 2015).

2.1 Language

We base our development on the calculus (Fig. 1) given in Pretnar’s (2015) tutorial. The
language is a variant of the fine-grained call-by-value λ -calculus of Levy et al. (2003), in
which terms are split into inert values and potentially effectful computations.

Programmers introduce effects with the construct op(v;y.c), which calls the operation
op with the parameter v. The effect invocation may yield a value to the continuation c using
the bound variable y. Programmers define the meaning of such operation calls by enclosing
them in effect handlers. A handler specifies a return clause, used when the computation
returns a final value, and a collection of operation clauses op(x;k)↦ c, which specify how
we should execute an invocation of the operation op called with the parameter x and a
continuation k. The underlying idea is that operation calls behave as signals that propagate
outwards until they reach a handler with a matching clause.

Our handlers are deep: any additional effects in the continuation are also handled by the
current handler. Our handlers are also forwarding: unhandled operations propagate through
each handler until they are handled or reach the top level. None of these design choices is
essential to the development below, but we make them to mirror Eff ’s design choices.

We use the following syntactic sugar (Fig. 1): semicolons elaborate to binding fresh
(dummy) variables; we use sequencing, with appropriate freshly bound variables, to allow

1 Accessible from the Oxford Research Archive (DOI: 10.5287/bodleian:KZk7zaXZb).

http://dx.doi.org/10.5287/bodleian:KZk7zaXZb

4 O. Kammar and M. Pretnar

Syntax

v ∶∶= value
x variable

∣ true ∣ false boolean constants
∣ fun x↦ c function
∣ h handler

h ∶∶= handler
handler {return x↦ cr,

op1(x1;k1)↦ c1, . . . ,opn(xn;kn)↦ cn}
return clause
operation clauses

c ∶∶= computation
return v return

∣ do x← c1 in c2 sequencing
∣ op(v;y.c) operation call
∣ if v then c1 else c2 conditional
∣ v1 v2 application
∣ with v handle c handling

Syntactic sugar

Sugar Elaboration
fresh variable binding

c1;c2 do ← c1 in c2
v1 c2 do a← c2 in v1 a
c1 v2 do f ← c1 in f v2
c1 c2 do f ← c1 in do a← c2 in f a
if c then c1 else c2 do b← c in if b then c1 else c2
op(cp;y.ck) do p← cp in op(p;y.ck)
fun xy↦ c fun x↦ return (fun y↦ c)
op(c) op(c;y.return y)

Fig. 1. A calculus for effect handlers

computations in places where values are expected in function calls, conditionals, and
operation calls; function introduction may abstract over two arguments; and we assume
a trivial continuation in operations without a continuation argument. In our examples, we
further assume to have the type unit with the sole inhabitant () and abbreviate op(()) to
op().

2.2 State handlers

We represent state with an operation set, which sets the state contents to a given parameter
and returns (), and get, which takes a unit parameter and returns the state contents. For

No value restriction is needed for algebraic effects and handlers 5

example, here is a computation that toggles the state and returns the old value:

T ∶=if get() then
set(false);return true

else
set(true);return false

In the runtime of Bauer & Pretnar’s (2015) Eff , there is a pre-defined collection of effects
that receive special treatment: runtime errors and memory accesses. If these effects are
not handled by the program, the runtime will handle them, invoking the corresponding
real computational effects. However, in our calculus, the behaviour of operations will be
determined exclusively by handlers, and computations such as T get stuck when evaluated
without an appropriate enclosing handler.

A simple example of a handler for stateful computations sets the state to a fixed value,
say true, and ignores all its modifications:

HC ∶= handler {get(;k)↦ k true,
set(s ;k)↦ k (),
return x ↦ return x}

Whenever we call a get operation, we yield true to the continuation, and ignore any set

operation calls by yielding the expected unit value () and doing nothing else. The return
clause of the handler states that we return values unmodified. Thus, when we handle T
with HC, we get back the result true, no matter how many times we previously called T .

A more useful handler is one that handles get and set in a way that results in the ex-
pected stateful behaviour. It uses a technique called parameter-passing (Plotkin & Pretnar,
2013), where we transform the handled computation into a function that passes around a
parameter, in our case the state contents:

HST ∶= handler {get(;k)↦ return (fun s↦ (k s) s),
set(s′;k)↦ return (fun ↦ (k ()) s′),
return x ↦ return (fun ↦ return x)}

We handle get with a function that takes the current state contents s and in the first
application, passes them as a result of get to the continuation. As our handlers are deep,
the continuation is further handled into a function, which we again need to supply with
the state contents. Since reading does not modify the state, we again pass s. We handle
set by first passing the unit result, and then applying the handled continuation to the new
state s′ as given by the parameter of set. The return clause of HST also needs to produce
a function that depends on the given state, in particular, a function that returns the given
value regardless of the state contents.

2.3 Operational semantics

To see how to use HST to simulate state, consider the operational semantics of the calculus,
also copied verbatim from Pretnar’s (2015) tutorial. We give the semantics in terms of the

6 O. Kammar and M. Pretnar

Semantics

c1 ; c′1

do x← c1 in c2 ; do x← c′1 in c2 do x← return v in c ; c[v/x]

do x← op(v;y.c1) in c2 ; op(v;y.do x← c1 in c2)
(DO-OP)

if true then c1 else c2 ; c1 if false then c1 else c2 ; c2

(fun x↦ c)v ; c[v/x]
For every h = handler {return x↦ cr,op1(x1;k1)↦ c1, . . . ,opn(xn;kn)↦ cn}, define:

c ; c′

with h handle c ; with h handle c′ with h handle (return v); cr[v/x]

opi ∈ {op1, . . . ,opn}
with h handle opi(v;y.c); ci[v/xi,(fun y↦ with h handle c)/ki]

(HANDLED-OP)

op /∈ {op1, . . . ,opn}
with h handle op(v;y.c); op(v;y.with h handle c)

(UNHANDLED-OP)

Fig. 2. The operational semantics for effect handlers

small-step relation c ; c′, defined in Fig. 2. As expected, there is no such relation for
values, as these are inert.

The rules for conditionals and function application are standard. For the sequencing
construct, do x← c1 in c2, we start by evaluating c1. If c1 returns some value v, we bind it
to x and evaluate c2. But if c1 calls an operation, we propagate the call outwards and defer
further evaluation to the continuation of the call, for example:

do x1← (do x2← op(v;y.c2) in c1) in c ;

do x1← op(v;y.do x2← c2 in c1) in c ;

op(v;y.do x1← (do x2← c2 in c1) in c)

In our account, we gloss over the standard issues with capture-avoiding substitution and
implicitly assume the appropriate freshness conditions. For example, in this case, that y is
fresh for c and c1.

To evaluate with h handle c, we start by evaluating c. If it returns a value, we continue
by evaluating the return clause of h. If c calls an operation op, there are two options. If h
has a matching clause for op, we start evaluating this clause, passing in the parameter and
the continuation. Recall that our handlers are deep, thus the continuation k is also handled
by the current handler, see HANDLED-OP. If h does not have a matching clause, we forward
the call outwards just like in sequencing, see UNHANDLED-OP.

Let us return to the state handler HST . If we use it on a stateful computation, no effects
occur as the handled computation returns a function waiting for an initial state. To run it,

No value restriction is needed for algebraic effects and handlers 7

we need to apply this function to the initial state. We abbreviate such an application by:

⟨c,s⟩ ∶= (with HST handle c) s

Note how we use the syntactic sugar for call-by-value function calls from Fig. 1.
Even though our calculus is pure, we can show the handler HST simulates global state in

the following way. Let st
; be the usual small-step semantics for global state, i.e.:

⟨get(),s⟩ st
; ⟨return s,s⟩ ⟨set(s′),s⟩ st

; ⟨return (),s′⟩

⟨c1,s⟩ st
; ⟨c′1,s′⟩

⟨do x← c1 in c2,s⟩ st
; ⟨do x← c′1 in c2,s

′⟩
and so on.

We can prove that each transition ⟨c1,s⟩ st
; ⟨c′1,s′⟩ has a matching sequence of tran-

sitions ⟨c1,s⟩ ;+ ⟨c′1,s′⟩, and therefore the handler semantics simulates the operational
semantics for global state. First, calculate:

⟨get(),s⟩ = (with HST handle (get(();y.return y))) s

; (fun s′↦ ((fun y↦ with HST handle (return y)) s′) s′) s

; ((fun y↦ with HST handle (return y)) s) s

; (with HST handle (return s)) s

= ⟨return s,s⟩
Similarly, we can prove:

⟨set(s′),s⟩;+ ⟨return (),s′⟩

We then conclude by straightforward induction on the relation ⟨c1,s⟩ st
; ⟨c′1,s′⟩.

In summary, the HST handler faithfully simulates state. For more details on simulating
state, see Bauer & Pretnar (2014) and Danvy (2006). Therefore, even though our calculus is
pure, it faithfully simulates impure computation. By giving an unrestricted Hindley-Milner
type system to this calculus, we now show that the effects expressible by effect handlers
interact well with polymorphism.

3 Type system

The type-and-effect system (Figs. 3–4) closely follows Pretnar (2015). It comprises two
kinds of types: values have simple types A, while computation types are additionally
annotated with finite sets of operations Σ, as in the effect system of Lucassen & Gifford
(1988).

We modify Pretnar’s system in two ways. The first modification is minor. We generalise
the type system to allow for more flexible local operation signatures Σ, where operations
may have different types when handled by different handlers, as in Kammar et al. (2013).
In contrast, Pretnar’s account posits a global assignment of predefined types to the effect
operations, and the effect annotations Σ only list which operations may be present. Local
signatures allow the same operation symbol to appear in disjoint parts of the program with

8 O. Kammar and M. Pretnar

Types

A,B ∶∶= value type
α type variable

∣ bool boolean type
∣ A→C function type
∣ C⇒ D handler type

C,D ∶∶=A ! Σ computation type
∀α⃗.A scheme

Σ ∶∶={op1 ∶ A1→ B1, . . . ,opn ∶ An→ Bn} effect signature
Θ ∶∶={α1, . . . ,αn} type variable environment
Γ ∶∶=∅ ∣ Γ,x ∶ A monomorphic environment
Ξ ∶∶=∅ ∣ Ξ,x ∶ ∀α⃗.A polymorphic environment

Fig. 3. Polymorphic types and effects for effect handlers

different types. Local signatures also give the calculus stronger theoretical properties, such
as strong normalisation and simpler denotational semantics, cf. Kammar et al..

The second modification is our main contribution. We incorporate Hindley-Milner poly-
morphism in a standard way, without any value restriction. We indicate these latter modi-
fications by shading in the figures. Amongst these:

• Local effect signatures Σ are finite mappings from operations op to pairs of value
types A, B, whose action we denote by (op ∶ A→ B) ∈ Σ. We denote the restriction
of a signature Σ to the set of operations disjoint from a given set ∆ = {opi ∣ 1 ≤ i ≤ n}
by Σ\∆.

• We extend the value types with type variables α and add type variable environ-
ments Θ, which are just finite sets of type variables.

• We introduce schemes∀α⃗.A, where α⃗ denotes a finite set of ∣α⃗∣-many type variables
ranged over by αi.

• We introduce kinding judgements Θ ⊢ X to explicitly keep track of the free type
variables in X . The shorthand Θ ⊢ X1, . . . ,Xn stands for the conjunction of the
judgements Θ⊢ X1, . . . ,Θ⊢ Xn.

• Typing judgements Θ;Ξ;Γ ⊢ M ∶ X include the standard monomorphic environ-
ments Γ which are a unique assignment of types to variables. We extend those with
type variable environments Θ and polymorphic environments Ξ, which are a unique
assignment of schemes to variables. We assume that no variable can appear in both
Γ and Ξ.2 These polymorphic variables can be specialised at any type.

• We add scheme judgements whose effect annotation is outside the scope of the
quantifier. The kinding assumption Θ⊢ Σ ensures that none of the type variables α⃗

2 This separation into two environments is not strictly necessary, as a monomorphic environment
Γ may be identified with a polymorphic environment where each quantifier ranges over an empty
tuple of type variables. We choose to separate the two to highlight which parts of the language
interact with polymorphism.

No value restriction is needed for algebraic effects and handlers 9

Well-formed value types:

α ∈Θ

Θ⊢ α Θ⊢ bool

Θ⊢ A Θ⊢C

Θ⊢ A→C

Θ⊢C Θ⊢ D

Θ⊢C⇒ D

Well-formed computation types, schemes, and effect signatures:

Θ⊢ A Θ⊢ Σ

Θ⊢ A !Σ

Θ, α⃗ ⊢ A

Θ⊢∀α⃗.A

[Θ⊢ Ai Θ⊢ Bi]1≤i≤n

Θ⊢ {op1 ∶ A1→ B1, . . . ,opn ∶ An→ Bn}

[Θ⊢ A](x∶A)∈Γ

Θ⊢ Γ

[Θ⊢∀α⃗.A](x∶∀α⃗.A)∈Ξ

Θ⊢ Ξ

Value judgements Θ;Ξ;Γ⊢ v ∶ A , assuming Θ⊢ Ξ,Γ,A:

(x ∶ A) ∈ Γ

Θ;Ξ;Γ⊢ x ∶ A

(x ∶ ∀α⃗.B) ∈ Ξ [Θ⊢ Ai]1≤i≤∣α⃗∣
Θ;Ξ;Γ⊢ x ∶ B[Ai/αi]1≤i≤∣α⃗∣ Θ;Ξ;Γ⊢ true ∶ bool

Θ;Ξ;Γ⊢ false ∶ bool

Θ;Ξ;Γ,x ∶ A⊢ c ∶C

Θ;Ξ;Γ⊢ fun x↦ c ∶ A→C

Θ;Ξ;Γ,x ∶ A⊢ cr ∶ B !Σ
′

Σ\{opi ∣ 1 ≤ i ≤ n} ⊆ Σ
′

[(opi ∶ Ai→ Bi) ∈ Σ Θ;Ξ;Γ,xi ∶ Ai,ki ∶ Bi→ B !Σ
′
⊢ ci ∶ B !Σ

′]
1≤i≤n

Θ;Ξ;Γ⊢ handler {return x↦ cr,op1(x1;k1)↦ c1, . . . ,opn(xn;kn)↦ cn} ∶ A !Σ⇒ B !Σ
′

Computation judgements Θ;Ξ;Γ⊢ c ∶ A !Σ , assuming Θ⊢ Ξ,Γ,A:

Θ;Ξ;Γ⊢ v ∶ A

Θ;Ξ;Γ⊢ return v ∶ A !Σ

Θ;Ξ;Γ⊢ c1 ∶ (∀α⃗.A) !Σ Θ;Ξ,x ∶ ∀α⃗.A;Γ ⊢ c2 ∶ B !Σ

Θ;Ξ;Γ⊢ do x← c1 in c2 ∶ B !Σ

(op ∶ Aop→ Bop) ∈ Σ Θ;Ξ;Γ⊢ v ∶ Aop Θ;Ξ;Γ,y ∶ Bop ⊢ c ∶ A !Σ

Θ;Ξ;Γ⊢ op(v;y.c) ∶ A !Σ

Θ;Ξ;Γ⊢ v ∶ bool Θ;Ξ;Γ⊢ c1 ∶C Θ;Ξ;Γ⊢ c2 ∶C

Θ;Ξ;Γ⊢ if v then c1 else c2 ∶C

Θ;Ξ;Γ⊢ v1 ∶ A→C Θ;Ξ;Γ⊢ v2 ∶ A

Θ;Ξ;Γ⊢ v1 v2 ∶C

Θ;Ξ;Γ⊢ v ∶C⇒ D Θ;Ξ;Γ⊢ c ∶C

Θ;Ξ;Γ⊢ with v handle c ∶ D

Scheme judgement Θ;Ξ;Γ⊢ c ∶ (∀α⃗.A) !Σ , assuming Θ⊢ Ξ,Γ,(∀α⃗.A),Σ:

Θ, α⃗;Ξ;Γ⊢ c ∶ A !Σ

Θ;Ξ;Γ⊢ c ∶ (∀α⃗.A) !Σ
(GEN)

Fig. 4. A polymorphic type-and-effect system for effect handlers

10 O. Kammar and M. Pretnar

appears in Σ. It is at this point that the hypothesised type inference algorithm should
decide which type variables α⃗ will be generalised. Our choice to separate scheme
judgements from type judgements simplifies the let-rule, and makes it very similar
to its standard, monomorphic counterpart.

The remaining kinding and typing rules are standard. Fine-grained call-by-value func-
tions take values and perform computations. An operation invocation is well-typed if the
type assigned to it by the local signature agrees with the type of the given parameter value v,
and with the type of argument the continuation c expects. A handler is well-typed if the type
of result the return clause expects matches with the type of computation the handler can
handle, and each operation clause is well-typed when the parameter type and continuation
type match the local signature the handler can handle. All clauses may cause additional
effects, and their effect annotations must agree and include these operations, as well as
any effect operations the handler does not explicitly handle, reflecting the fact that our
handlers are forwarding. The fact that our handlers are deep is reflected by the type of the
continuation: the effects the continuation may cause have already been handled, and so the
continuation may cause effects in the resulting signature and of the resulting return type.

For the given effect system, we then have:

Theorem (Safety). If ⊢ c ∶ A !Σ holds, then either:

(i) c ; c′ for some⊢ c′ ∶ A !Σ;
(ii) c = return v for some⊢ v ∶ A; or

(iii) c = op(v;y.c′) for some (op ∶ Aop→ Bop) ∈ Σ,⊢ v ∶ Aop, and y ∶ Bop ⊢ c′ ∶ A !Σ.

In particular, when Σ = ∅, evaluation will not get stuck before returning a value. For a
calculus that differs from ours only in being set in a call-by-push-value (Levy, 2004) rather
than fine-grain call-by-value setting, Kammar et al. (2013) strengthen the result and show
that all well-typed programs terminate. Such a result also holds in this case with a standard
proof. We do not pursue such a proof here as it is orthogonal to our goal.
Proof
We prove progress and preservation lemmata separately by induction. We formalized1

the calculus and the safety theorem in the Twelf proof assistant (Pfenning & Schürmann,
1999). Our formalization extends Bauer & Pretnar’s (2014) existing formalization of Eff’s
core calculus with type schemes and polymorphism. The code is compatible with ver-
sion 1.7.1 of Twelf. We summarise the crucial step, namely proving type-and-effect preser-
vation under the DO-OP transition.

Assume that the reduct in DO-OP is well-typed, and invert its type derivation:

(op ∶ Aop→ Bop) ∈ Σ

⋮

Θ, α⃗ ⊢ v ∶ Aop

⋮

Θ, α⃗;y ∶ Bop ⊢ c1 ∶ A !Σ

Θ, α⃗ ⊢ op(v;y.c1) ∶ A!Σ

Θ⊢ op(v;y.c1) ∶ (∀α⃗.A) !Σ

⋮

Θ;x ∶ ∀α⃗.A⊢ c2 ∶ B !Σ

Θ⊢ do x← op(v;y.c1) in c2 ∶ B !Σ

The GEN rule ensures that none of the type variables in α⃗ appear in Σ. Because Σ includes
op ∶Aop→Bop, none of these variables appear in Aop, and we may strengthen the derivation

No value restriction is needed for algebraic effects and handlers 11

of Θ, α⃗ ⊢ v ∶ Aop to a derivation of Θ⊢ v ∶ Aop. As a consequence, the following derivation
is valid:

(op ∶ Aop→ Bop) ∈ Σ

⋮

Θ⊢ v ∶ Aop

⋮

Θ, α⃗;y ∶ Bop ⊢ c1 ∶ A !Σ

Θ;y ∶ Bop ⊢ c1 ∶ (∀α⃗.A) !Σ

⋮

Θ;x ∶ ∀α⃗.A⊢ c2 ∶ B !Σ

Θ;y ∶ Bop ⊢ do x← c1 in c2 ∶ B !Σ

Θ⊢ op(v;y.do x← c1 in c2) ∶ B !Σ

Therefore, the reduction in DO-OP preserves both the type and the effect annotation. �
The Safety Theorem is robust under the following standard variations in the calculus:

coarse annotations. We can make the signature Σ global, and only keep track of which
operations are used, as in Pretnar (2015). The types in this global signature cannot use
any type variables. The soundness proof remains essentially unchanged1. Due to the lack
of type variables in the global signature, there is no need to impose a side-condition on
the well-formedness of the effect annotation in the GEN rule.
It may seem this coarser system is a restriction of our current system, where the type
information for each operation has to agree in all effect annotations, and hence it is
sound by the Safety Theorem. This is not the case. In this coarser system, the signatures
on function types are not annotated with the types of the operations. If those types were
fully written out, they would involve the global signature, leading to potential mutual
recursion between signatures and function types. For example, if we elaborate the global
signature Σ = {op ∶ unit→ (unit→ unit !{op})}, we would get:

Σ = {op ∶ unit→ (unit→ (unit !Σ))}
where the outermost arrow is part of the signature syntax and receives no effect anno-
tation on the co-domain. This recursion is not a mere formality. As mentioned above,
the type-and-effect system with local signatures we have described ensures well-typed
terms terminate, cf. Kammar et al. (2013). When we switch to a global signature, we
can use effect operations with higher-order return types to express well-typed diverging
computations. With the above global signature Σ = {op ∶ unit→ (unit→ unit !{op})},
consider the handler

H ∶= handler {return x↦ return x,
op(;k)↦ k(fun ↦ op()())}

In the coarse type system, we can derive the judgement:

⊢ H ∶ (unit !{op})⇒ (unit !∅)
Handling the computation⊢ op()() ∶ unit !{op} with H diverges:

with H handle op()();+ with H handle (fun ↦ op()())()
; with H handle op()()

In fact, by a variation on Landin’s (1964) knot, we can express a variant of the Y -
combinator, such that for a function f that is pure, Y f behaves like the fixed-point of f
when invoked on pure arguments.

12 O. Kammar and M. Pretnar

no annotations. We can remove all the effect annotations Σ from type judgements and fix
a single, global signature Σ. The advantage of having an effect system is the additional
guarantee in clause (iii) of the Safety Theorem, which ensures that any unhandled opera-
tion must appear in Σ. Without annotations, any operation may be called. This system is
a restriction of the coarse variation, where each effect annotation is the entire signature.
Consequently, it is sound.

additional language features. To the calculus with coarse annotations, we can add fixed-
points, structural subtyping and static effect instances. The soundness proof remains
essentially unchanged1 as these modifications are orthogonal to polymorphism. Simi-
larly, we can replace deep handlers with shallow ones1, as in Kammar et al. (2013) and
Kiselyov et al. (2013). As the changes are again orthogonal to polymorphism, we may
reasonably assume a similar soundness result to hold for a calculus that incorporates
all of the above: subtyping, instances for coarse annotations, and, through two separate
syntactic constructs, both deep and shallow handlers.

While the strong normalisation property of the fully annotated calculus shows non-
termination cannot be admitted through the back-door, it does not mean recursion cannot
be safely integrated with polymorphism through an explicit fixed-point construct. Compare
the situation with, for example, the simply-typed λ -calculus and its sound extension with
a fixed-point operator in the PCF calculus (Scott, 1993; Plotkin, 1977). We conjecture it is
straightforward to add an appropriate fixed-point operator to our fully annotated calculus
safely, and the fact that the coarsely annotated calculus can be safely extended with fixed-
points supports this conjecture.

4 Expressiveness

There is currently no simple type system integrating reference cells with polymorphism
without the value restriction. This non-existence contrasts the simplicity of our type sys-
tem, and calls into question both its degree of feature integration and its expressiveness.
First, we evaluate the degree and smoothness of the interaction between polymorphism and
other features in our calculus. Then, we highlight the difference in expressiveness between
effect handlers and reference cells. As a basis for our evaluation and comparison, we use
Leroy’s (1992) set of example programs for analysing the usefulness of a polymorphic type
system for reference cells.

4.1 Evaluation

Algebraic effects allow us to lace a piece of code with operations in the signature

{get ∶ unit→ α,set ∶ α → unit}

The scheme assigned to the handler HST , which handles them away, is

HST ∶ ∀α,β .α !{get ∶ unit→ β ,set ∶ β → unit}⇒ (β → α !∅) !∅

It takes a computation of type α that interacts with a state of type β , and handles it to a
pure function of type β → α !∅. The rightmost ∅ indicates that no effects can occur when
producing the function.

No value restriction is needed for algebraic effects and handlers 13

This handler can handle computations with different types of state, for example:

(with HST handle set()) ();

(with HST handle get()) true

We can also use effects in polymorphic code:

do f ← if get() then return fun xy↦ return x

else return fun xy↦ return y

(∗ f ∶ ∀α.α → (α → α !∅) !∅ ∗)

in (f (fun b↦ return b) (∗ α ∶= bool→ bool !{get} ∗)
(fun b↦ set(b);return b))
(f true false) (∗ α ∶= bool ∗)

In our call-by-value semantics, if we wrap this computation with the state handler, the
memory look-up in f ’s definition will only occur once.

To demonstrate that the polymorphic, effectful, and high-order features interact well,
we hypothetically extend our calculus with lists. The hypothesised extension may include
primitives such as the empty list [], a list cons (∶∶) and tail-recursive iteration foldl, which
we expect to interact smoothly with polymorphism. Thus we can use HST to implement
functional features in an imperative style.

do imp map← fun f xs↦
with HST handle (foldl (fun x↦ set(f x ∶∶ get())

()
xs;

reverse(get())
[] (∗ initial state ∗) in . . .

The scheme assigned to imp map is

imp map ∶ ∀αβ .(α → β !Σ)→ (α list→ β list !Σ) !∅

for any Σ. This implementation is imperative in style, but not imperative per se, as all
operations are handled by high-order functions. The function imp map can also be partially
applied and retain its polymorphism, for example, in

do list id← imp map id in
do nil ← list id [] in . . .

we have the scheme assignments:

list id ∶ ∀α.α list→ α list !∅
nil ∶ ∀α.α list

Most importantly, the following program is well-typed:

do id← (fun f ↦ f) (fun x↦ x) in

do id′← id (id) in . . .

and both functions are assigned the polymorphic scheme ∀α.α → α!Σ. Such mixed-
variance polymorphism is ruled out by all current variants of the value restriction.

14 O. Kammar and M. Pretnar

4.2 Reference cells

We conjecture it is impossible to simulate full blown reference cells using effect handlers
without other language features, but we do not have a formal proof for this statement.
We can increase modularity by introducing instances (Bauer & Pretnar, 2015, 2014; Pret-
nar, 2014). These may be thought of as first class atomic names. With instances, each
effect instance ι and an operation symbol op determine an operation ι#op. In handlers,
each operation clause v#op(x;k)↦ c specifies which instance, dynamically given by the
value v, of the statically chosen effect operation symbol op the handler handles. At runtime,
invocations of the same operation op but with different instances will not be caught by this
handler and will be forwarded.

Instances allow us to pass a cell around by passing an instance, but they are still less
expressive than having the ability to allocate arbitrarily many new cells dynamically. For
example, we do not know how to implement even the simplest of Leroy’s (1992) bench-
marks:

do make ref← fun x↦ ref x in . . .

Eff provides a mechanism that can both generate fresh instances and attach them to a
stateful resource (Bauer & Pretnar, 2015), allowing one to directly implement a make ref
analogue: make ref creates a fresh instances that has get and set operations associated with
it. Only code that knows what the instance is, can handle these effects. However, it is not
easy to find a corresponding type-and-effect system for fresh instances (Bauer & Pretnar,
2014; Pretnar, 2014), let alone a polymorphic one. Without an alternative to reference cells,
the expressiveness of our calculus is limited.

As a final example, recall the problematic reference cell example which cannot be
directly expressed in our calculus:

do r← ref [] in
r ∶= [()];
true ∶∶ !r

We can express a computation that writes a unit list value and reads a bool list value:

set([()]);

true ∶∶ get()

However, this computation has the effect annotation

{set ∶ unit list→ unit,get ∶ unit→ bool list}

which is incompatible with the type of the state handler HST . Other handlers for the state
operations may have a compatible type. For example, the read-only state handler HRO

which ignores any memory updates:

HRO ∶= handler { return x↦ fun ↦ return x,

get(;k)↦ fun s↦ k s s,

set(;k)↦ fun s↦ k () s}

No value restriction is needed for algebraic effects and handlers 15

Syntax

p ∶∶= p ∣ q ∣ r ∣ . . . parameter

v ∶∶= value
x variable

∣ true ∣ false boolean constants
∣ () unit value
∣ fun x↦ c function

c ∶∶= computation
return v return

∣ do x← c1 in c2 sequencing
∣ if v then c1 else c2 conditional
∣ v1 v2 application
∣ !p dereferencing

∣ p ∶= v assignment

∣ dlet p← v in c rebinding

Fig. 5. A calculus for dynamically scoped state

It has the scheme

HRO ∶ ∀α,β ,γ.α !{get ∶ unit→ β ,set ∶ γ → unit}⇒ (β → α !∅) !∅

and can be applied to the above computation without run-time errors.

4.3 Dynamically scoped state

As we saw in Sec. 2.2, we can simulate global state using the handler HST , and handle this
state locally to give a pure computation. While we do not know whether effect handlers
can simulate reference cells or not, we will now characterise the handler HST as expressing
the notion of dynamically scoped state.

In order to explain what we mean by dynamically scoped state, and to make the discus-
sion precise, we consider the calculus presented in Fig. 5. It is a fine-grained call-by-value
variation on the dynamic scope calculi of Kiselyov et al. (2006) and Moreau (1998).

We assume a set of parameters ranged over by p that name dynamically scoped memory
cells. These cells can be dereferenced, !p, or assigned to, p ∶= v, just like ref cells. The
rebinding construct dlet p← v in c declares that in executing c, all references to p will be
bound to this occurrence of p, and shadow other binding declarations that may be in place.

16 O. Kammar and M. Pretnar

Auxiliary definitions
Evaluation contexts:

E ∶∶= [] ∣ E[do x← [] in c] ∣ E[dlet p← v in []]

Parameter binding:

bp([]) ∶= ∅ bp(E[do x← [] in c]) ∶= bp(E) bp(E[dlet p← v in []]) ∶= bp(E)∪{p}

Semantics

E[do x← return v in c] dyn
⟿ E[c[v/x]] E[if true then c1 else c2]

dyn
⟿ E[c1]

E[if false then c1 else c2]
dyn
⟿ E[c2] E[(fun x↦ c)v] dyn

⟿ E[c[v/x]]

E[dlet p← v in return v′] dyn
⟿ E[return v′]

E[dlet p← v in E ′[!p]] dyn
⟿ E[dlet p← v in E ′[return v]]

(p ∉ bp(E ′))

E[dlet p← v in E ′[p ∶= v′]] dyn
⟿ E[dlet p← v′ in E ′[return ()]]

(p ∉ bp(E ′))

Fig. 6. The semantics for dynamically scoped state

For example, assuming we have a type of integers the following code will evaluate to
return 2.

do f ← dlet p← 0 in
return (fun ↦

p ∶= 1+!p) in
dlet p← 1 in

f ();
!p

During its execution, the state changes inside the function f bind dynamically to the closest
enclosing rebinding, which is the second one.

Fig. 6 describes the (Felleisen-style) operational semantics for this calculus. We kept
the style of semantics as close as possible to Kiselyov et al.’s (2006) to make it clear
we use the same notion of dynamic scope, and our theoretical treatment closely mirrors
theirs. The semantics uses the set of parameters bound in a given context E, denoted by
bp(E). The three shaded transitions are the transitions specific to dynamic scope. First, a
fully evaluated computation removes a preceding parameter binding, as it will no longer be
used. For the other two transitions, the side condition p∉ bp(E ′) ensures the uniqueness of
the decomposition into the context E ′ by locating the closest rebinding of p. The semantics
of dereferencing returns the value associated to this closest rebinding, while the semantics
of assignment modifies it. In our design, assignment evaluates to the unit value, deviating

No value restriction is needed for algebraic effects and handlers 17

Term-level translation
⌈x⌉ ∶= x ⌈true⌉ ∶= true ⌈false⌉ ∶= false ⌈fun x↦ c⌉ ∶= fun x↦ ⌈c⌉

⌈v1 v2⌉ ∶= ⌈v1⌉ ⌈v2⌉ ⌈return v⌉ ∶= return ⌈v⌉ ⌈do x← c1 in c2⌉ ∶= do x← ⌈c1⌉ in ⌈c2⌉

⌈!p⌉ ∶= get p() ⌈p ∶= v⌉ ∶= set p(⌈v⌉) ⌈dlet p← v in c⌉ ∶= (with H p
ST handle ⌈c⌉) ⌈v⌉

where:

H p
ST ∶= handler {get p(;k)↦return (fun s↦ (k s) s),

set p(s′;k)↦return (fun ↦ (k ()) s′),
return x ↦return (fun ↦ return x)}

Fig. 7. Handlers expressing dynamically scoped state

from Kiselyov et al.’s semantics. This purely cosmetic change does not alter the nature of
dynamically scope state we are dealing with, and makes the relationship with HST tighter.

The example above evaluates as follows:

do f ← dlet p← 0 in
return (fun ↦

p ∶= 1+!p) in
dlet p← 1 in

f ();
!p

dyn
⟿

do f ← return (fun ↦

p ∶= 1+!p) in
dlet p← 1 in

f ();
!p

dyn
⟿

dlet p← 1 in
(fun ↦

p ∶= 1+!p) ();
!p

dyn
⟿

dlet p← 1 in
p ∶= 1+!p;
!p

dyn
⟿

+ return 2

Fig. 7 shows how effect handlers express dynamically scoped state. Using Felleisen’s
(1991) terminology, it is a macro translation. First, it does not use any information collected
globally as it is defined homomorphically over the syntax of the language. Second, it keeps
the common core of the two languages unchanged, translating a boolean value to itself, a
function to a function, and so forth. The translation is straightforward: it translates deref-
erencing and assignments to p as specially named effects, get p and set p. Rebinding
amounts to handling with HST , and passing the translated rebinding value as the initial
value.

This translation simulates dynamic allocation:

Theorem (Simulation). For all c
dyn
⟿ c′, we have ⌈c⌉;+ ⌈c′⌉.

Proof
First, extend the translations to evaluation contexts, and show that ⌈E[c]⌉ = ⌈E⌉[⌈c⌉].
Then, show the translation respects capture-avoiding substitution: ⌈c[v/x]⌉ = ⌈c⌉[⌈v⌉/x].
To deal with the mismatch between Felleisen-style and small-step semantics, show that for

18 O. Kammar and M. Pretnar

Types

A,B ∶∶= value type
α type variable

∣ bool boolean type
∣ unit unit type
∣ A→ B function type

∀α⃗.A scheme
Σ ∶∶= {p1 ∶ A1, . . . , pn ∶ An} parameter signature
Θ ∶∶= {α1, . . . ,αn} type variable environment
Γ ∶∶= ∅ ∣ Γ,x ∶ A monomorphic environment
Ξ ∶∶= ∅ ∣ Ξ,x ∶ ∀α⃗.A polymorphic environment

Fig. 8. Polymorphic types for dynamically scoped state

all evaluation contexts E, if c
dyn
⟿ c′ then ⌈E⌉[c];+ ⌈E⌉[c′]. It therefore suffices to prove

the theorem for each of the transitions in Fig. 6 specialised to E ∶= [].
For each of the common constructs of the two calculi, the proof is immediate, for

example:

⌈do x← return v in c⌉ = do x← return ⌈v⌉ in ⌈c⌉; ⌈c⌉[⌈v⌉/x] = ⌈c[v/x]⌉
The next remaining transition amounts to handling a terminal computation:

⌈dlet p← v in return v′⌉ = (with H p
ST handle return ⌈v′⌉) ⌈v⌉

;
+ (fun ↦ return ⌈v′⌉) ⌈v⌉; return ⌈v′⌉

For the final two transitions, show that, for all contexts E, parameters p ∉ bp(E), oper-
ations op that is either get p or set p, and x fresh for E, we have:

⌈E⌉[op(v;x.c)];∗ op(v;x.⌈E⌉[c])
And finally, calculate:

⌈dlet p← v in E[!p]⌉ =(with H p
ST handle ⌈E⌉[get p(();x.return x)) ⌈v⌉

;
∗(with H p

ST handle get p(();x.⌈E⌉[return x])) ⌈v⌉
;
+(fun s↦ ((fun x↦ with H p

ST handle ⌈E⌉[return x]) s) s) ⌈v⌉
;
+with H p

ST handle ⌈E⌉[return v] ⌈v⌉
=⌈dlet p← v in E[return v]⌉

A similar calculation for assignment completes the proof. �
This translation, while being straightforward, also preserves the type system. Fig. 8

presents the types for the calculus. The only notable feature is that, like Kiselyov et al., we
assume a global signature assigning to each parameter a type. As the signature is global,
these (monomorphic) types do not contain any type variables.

Fig. 9 presents the kind and (Hindley-Milner polymorphic) type system for the calcu-
lus. The kind system ensures well-kinded signatures assign types without type variables.

No value restriction is needed for algebraic effects and handlers 19

Well-formed types, parameter signatures, and schemes:

α ∈Θ

Θ⊢
dyn

α Θ⊢
dyn

bool Θ⊢
dyn

unit

Θ⊢
dyn A Θ⊢

dyn C

Θ⊢
dyn A→C

[⊢dyn Ai]1≤i≤n

Θ⊢
dyn {p1 ∶ A1, . . . , pn ∶ An}

Θ, α⃗ ⊢
dyn A

Θ⊢
dyn

∀α⃗.A

Well-formed polymorphic and monomorphic environments:

[Θ⊢dyn
∀α⃗.A](x∶∀α⃗.A)∈Ξ

Θ⊢
dyn

Ξ

[Θ⊢dyn A](x∶A)∈Γ

Θ⊢
dyn

Γ

Value judgements Θ;Ξ;Γ⊢
dyn
Σ

v ∶ A , assuming Θ⊢
dyn

Ξ,Γ,A,Σ:

(x ∶ A) ∈ Γ

Θ;Ξ;Γ⊢
dyn
Σ

x ∶ A

(x ∶ ∀α⃗.B) ∈ Ξ [Θ⊢dyn Ai]1≤i≤∣α⃗∣

Θ;Ξ;Γ⊢
dyn
Σ

x ∶ B[Ai/αi]1≤i≤∣α⃗∣ Θ;Ξ;Γ⊢
dyn
Σ

true ∶ bool

Θ;Ξ;Γ⊢
dyn
Σ

false ∶ bool Θ;Ξ;Γ⊢
dyn
Σ

() ∶ unit
Θ;Ξ;Γ,x ∶ A⊢

dyn
Σ

c ∶ B

Θ;Ξ;Γ⊢
dyn
Σ

fun x↦ c ∶ A→ B

Computation judgements Θ;Ξ;Γ⊢
dyn
Σ

c ∶ A , assuming Θ⊢
dyn
Σ

Ξ,Γ,A,Σ:

Θ;Ξ;Γ⊢
dyn
Σ

v ∶ A

Θ;Ξ;Γ⊢
dyn
Σ

return v ∶ A

Θ;Ξ;Γ⊢
dyn
Σ

c1 ∶ (∀α⃗.A) Θ;Ξ,x ∶ ∀α⃗.A;Γ⊢
dyn
Σ

c2 ∶ B

Θ;Ξ;Γ⊢
dyn
Σ

do x← c1 in c2 ∶ B

Θ;Ξ;Γ⊢
dyn
Σ

v ∶ bool Θ;Ξ;Γ⊢
dyn
Σ

c1 ∶C Θ;Ξ;Γ⊢
dyn
Σ

c2 ∶C

Θ;Ξ;Γ⊢
dyn
Σ

if v then c1 else c2 ∶C

Θ;Ξ;Γ⊢
dyn
Σ

v1 ∶ A→ B Θ;Ξ;Γ⊢
dyn
Σ

v2 ∶ A

Θ;Ξ;Γ⊢
dyn
Σ

v1 v2 ∶ B

(p ∶ A) ∈ Σ

Θ;Ξ;Γ⊢
dyn
Σ

!p ∶ A

(p ∶ A) ∈ Σ Θ;Ξ;Γ⊢
dyn
Σ

v ∶ A

Θ;Ξ;Γ⊢
dyn
Σ

p ∶= v ∶ unit

(p ∶ A) ∈ Σ Θ;Ξ;Γ⊢
dyn
Σ

v ∶ A Θ;Ξ;Γ⊢
dyn
Σ

c ∶ B

Θ;Ξ;Γ⊢
dyn
Σ

dlet p← v in c ∶ B

Scheme judgement Θ;Ξ;Γ⊢
dyn
Σ

c ∶ (∀α⃗.A) , assuming Θ⊢
dyn
Σ

Ξ,Γ,(∀α⃗.A),Σ:

Θ, α⃗;Ξ;Γ⊢
dyn
Σ

c ∶ A

Θ;Ξ;Γ⊢
dyn
Σ

c ∶ (∀α⃗.A)
(GEN)

Fig. 9. A polymorphic type system for dynamically scoped state

20 O. Kammar and M. Pretnar

Type-level translation with effect annotations

⌈α⌉ ∶= α ⌈bool⌉ ∶= bool ⌈A→ B⌉ ∶= ⌈A⌉→ ⌈B⌉ !⌈Σ⌉ ⌈∀α⃗.A⌉ ∶=∀α⃗.⌈A⌉

⌈Θ⌉ ∶=Θ ⌈Γ⌉ ∶= {x ∶ ⌈A⌉ ∣ (x ∶ A) ∈ Γ} ⌈Ξ⌉ ∶= {x ∶ ∀α⃗.⌈A⌉ ∣ (x ∶ ∀α⃗.A) ∈ Γ}

⌈Σ⌉ ∶= {get p ∶ unit→ ⌈A⌉,set p ∶ ⌈A⌉→ unit ∣ (p ∶ A) ∈ Σ}

provided Σ is ground.

Type-level translation without effect annotations

⌊α⌋ ∶= α ⌊bool⌋ ∶= bool ⌊A→ B⌋ ∶= ⌊A⌋→ ⌊B⌋ ⌊∀α⃗.A⌋ ∶=∀α⃗.⌊A⌋ ⌊Θ⌋ ∶=Θ

⌊Γ⌋ ∶= {x ∶ ⌊A⌋ ∣ (x ∶ A) ∈ Γ} ⌊Ξ⌋ ∶= {x ∶ ∀α⃗.⌊A⌋ ∣ (x ∶ ∀α⃗.A) ∈ Γ}
for the ambient effect signature:

⌊Σ⌋ ∶= {get p ∶ unit→ ⌊A⌋,set p ∶ ⌊A⌋→ unit ∣ (p ∶ A) ∈ Σ}

Fig. 10. Handlers type system expressing dynamically scoped state

Typing judgements Θ;Ξ;Γ ⊢
dyn
Σ

c ∶ A refer to the fixed, ambient, well-kinded parameter
signature Σ. The typing rules specific to dynamically scoped state (shaded) ensure that we
may only dereference, assign to, and rebind a parameter in accordance with the ambient
signature. The assignment rule also highlights our decision to ascribe the unit type to
assignment, in a minor deviation from Kiselyov et al.. The (GEN) rule is now completely
unrestricted, ensured by the assumption that the type signature does not involve type vari-
ables.

Fig. 10 extends the translation to types. The parameter signature Σ translates into an
effect signature containing the distinct pair of effects corresponding to this parameter,
namely get p and set p, with the appropriate type. Function types may cause any effect
in this translated signature ⌈Σ⌉. This translation is therefore not-well-defined: if Σ contains
any function types, then ⌈Σ⌉ refers to ⌈A→ B⌉, which refers to ⌈Σ⌉ again.

There are at least three ways around this issue. The simplest solution, presented in the
top half of Fig. 10 is to restrict Σ to ground types, i.e., prohibit storing functions.

A less restrictive solution is to use the coarser type system for effect handlers that does
not track effect annotations at all, and define ⌊A→ B⌋ ∶= ⌊A⌋→ ⌊B⌋, as in the bottom half
of Fig. 10. This solution works well, as the effects get p and put p maintain their type.

A more sophisticated potential solution is to use equi-recursive effect signatures. At this
point in time, such a type-and-effect system has not been developed, but we do not foresee
any serious obstacles in developing it: its denotational semantics would involve a recursive
domain equation in the same spirit as in Bauer & Pretnar (2014).

The fact that higher-order parameter types merit domain-theoretic semantics is not sur-
prising in light of a piece of folklore due to Oleg Kiselyov: such parameters allow non-
terminating programs. We call a type A inhabited if there exists a closed value⊢dyn

Σ
v ∶ A.

No value restriction is needed for algebraic effects and handlers 21

Proposition. If Σ contains a higher-order type parameter (p ∶ A → B) ∈ Σ for some
inhabited type A, then there is a term c satisfying:

c
dyn
⟿

+ c

Proof
Let⊢dyn

Σ
v ∶ A be an inhabitant of A, and take:

c ∶= dlet p← (fun a↦ (!p)a) in
(!p)v

Then:

c
dyn
⟿

dlet p← (fun a↦ (!p)a) in
(fun a↦ (!p)a)v

dyn
⟿

+ dlet p← (fun a↦ (!p)a) in
(!p)v

= c

as required. �
Moreover, every parameter (p ∶ A→ B) lets us define a form of a fixed-point combinator

Y ∶ ((A→ B)→ A→ B)→ (A→ B) by a variant of Landin’s knot, provided the functions
passed to this combinator and their arguments do not involve p.

The two proposed translations are correct:

Theorem (Type Preservation). For every Θ;Ξ;Γ ⊢
dyn
Σ

c ∶ A and Θ;Ξ;Γ ⊢
dyn
Σ

v ∶ A, we
have:

• If Σ is ground, then ⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ ⌈c⌉ ∶ ⌈A⌉ !⌈Σ⌉ and ⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ ⌈v⌉ ∶ ⌈A⌉.
• ⌊Θ⌋;⌊Ξ⌋;⌊Γ⌋⊢ ⌈c⌉ ∶ ⌊A⌋ and ⌊Θ⌋;⌊Ξ⌋;⌊Γ⌋⊢ ⌈v⌉ ∶ ⌊A⌋.

Proof
For the first part only, first show that if A is ground, then ⌈A⌉ = A, and so if Σ is a well-
kinded ground signature, then ⌈Σ⌉ is well-defined and well-kinded.

Then the proofs of both parts follow the same lines. By mutual induction on the kinding
judgements, show that well-kinded types, schemes, and contexts translate into well-kinded
types, schemes, and contexts, respectively. Then show that both translations respect type-
level substitution:

⌈B[Ai/αi]1≤i≤n⌉ = ⌈B⌉[⌈Ai⌉/αi]1≤i≤n

and similarly for the coarse translation.
Finally, by mutual induction on typing judgements for values and computations, and on

scheming judgements, show the hypothesis. We mention only the interesting cases.
For dereferencing a cell (p ∶ A) ∈ Σ, by the translation’s definition,

(get p ∶ unit→ ⌈A⌉) ∈ ⌈Σ⌉

Use this fact to derive that ⌈!p⌉ has the type ⌈A⌉. Use a similar argument for assignment.
Next, show that for all (p ∶ A) ∈ Σ:

⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ H p
ST ∶ (B !⌈Σ⌉)⇒ ((⌈A⌉→ (B !⌈Σ⌉)) !⌈Σ⌉)

and use this fact, together with the induction hypotheses, to give a valid derivation for
⌈dlet p← v in c⌉. �

22 O. Kammar and M. Pretnar

In summary, the handler HST expresses dynamically scoped state, in both terms and
types.

5 Related work

In addition to all above discussions of immediately relevant work, we now provide the
interested reader with a short survey of existing literature in related areas.

Polymorphism and type inference. The System F of Girard (1972) and the polymorphic
λ -calculus of Reynolds (1974) pioneer the meta-theory of polymorphic computation to
which we contribute. The impredicativity of their proposed systems has two consequences
relevant to our setting. First, because polymorphic types can appear anywhere a type may
appear, type inference becomes undecidable (Wells, 1999). Second, because universally
quantified type variables range over the types which they are used to define, these calculi
have no set-theoretic models (Reynolds, 1984). Hindley-Milner polymorphism (Milner,
1978) avoids these two shortcomings (Harper & Mitchell, 1993; Ohori, 1989), providing
a convenient theoretical and practical setting for investigating the integration of effects
and polymorphism. Row polymorphism (Wand, 1987; Ohori, 1995, 1992; Garrigue, 2001,
2010, 2015) allows a polymorphic treatment for extensible records, or labelled products.
The salient features of such records and their operations (Cardelli & Mitchell, 1991; Harper
& Pierce, 1991) is their contribution to program modularity and their compatibility with
Hindley-Milner polymorphism (Rémy, 1990, 1991), which may be relevant for program-
ming with algebraic effects and handlers (Hillerström & Lindley, 2016).

The effect polymorphism problem and the value restriction. Gordon et al. (1979)
first describe the problem under consideration in the context of integrating references
with Hindley-Milner polymorphism. Harper & Lillibridge (1993b) noticed the same is-
sue arises with the control operators call/cc and throw and announced it on the types

mailing list in July 1991. There have been many proposed solutions, notably Leroy (1992,
1993); Leroy & Weis (1991); Tofte (1990) and Appel & MacQueen’s (1991) Standard
ML of New Jersey. Wright (1995) argues for the sufficiency of the value restriction in
practical implementations, and Garrigue (2004) argues for its relaxation. Wright’s solution
has become standard undergraduate textbook material (Pierce, 2002; Rémy, 2015; Pitts,
2011–2016). Nonetheless, Kiselyov (2015) advocates relaxing the value restriction even
further to facilitate implementation techniques for staged computation. Our contribution
demonstrates such relaxation is possible in the algebraic case. Our work originates from a
semantic analysis of the interaction of effects and polymorphism. In this vein, Zeilberger
(2009); Munch-Maccagnoni (2009); and Lepigre (2016) propose semantic perspectives
on the value restriction using focussed calculi and realisability semantics, and Jaber &
Tzevelekos (2016) propose game semantics as an investigatory tool.

Effect systems. The effect system plays a central role in the typing of algebraic effects in
general, and in particular in our system. Lucassen & Gifford (1988) introduce a polymor-
phic effect system to improve execution times using implicit parallelism in the context of
the FX programming language. While the original system only kept track of region-based

No value restriction is needed for algebraic effects and handlers 23

memory accesses and allocation, it was clear the methodology can be adapted to multiple
kinds of effects and analyses, including: control-flow analysis, binding-time analysis, and
process communication, see Nielson & Nielson (1999) for a survey. The nature of the effect
annotations can be descriptive, over-approximating which effects may be caused, or more
intensional and prescriptive, tracking exactly the order in which the effects must occur.
Wadler & Thiemann (2003); Tolmach (1998); and Benton et al. (1998) independently make
the connection between type-and-effect systems and multi-monadic type systems, marking
the beginning of a general theory. Marino & Millstein (2009) propose a general framework
for effect systems, and Kammar & Plotkin (2012); Kammar (2014); and Katsumata (2014)
propose general theories of effect systems that include a denotational semantic account,
which underlies the system we propose. Leroy & Weis’s (1991) use of an effect system
to address the effect polymorphism problem is very close to ours. Effect systems have
also been used by Rompf et al. (2009) to enable a more efficient compilation of delimited
control from Scala to Java bytecodes, and by Lippmeier’s (2009) compiler for the Disciple
language during the optimisation process and to mix lazy and strict evaluation order. In
the context of algebraic effects and handlers, Bauer & Pretnar (2014) propose an effect
system with sub-effecting, and Hillerström & Lindley (2016) propose an effect system
with effect polymorphism based on on their implementation of row types in the Links web
programming language (Cooper et al., 2006; Lindley & Cheney, 2012).

The algebraic theory of computational effects. Algebraic effects and handlers arise
from the monadic and algebraic account of computational effects, which we survey briefly
here. Moggi (1991) conceptualises computational effects using monads. Plotkin & Power
(2003, 2002) refine this account by incorporating the syntactic constructs causing the
effects into the meta-theory in terms of equations between universal algebraic terms. The
algebraic account allows a more refined analysis of existing effects (Staton, 2010, 2009,
2013b; Melliès, 2014, 2010) and new effects (Staton, 2013a, 2015; Fiore & Staton, 2014).
The inclusion of effect operations into the meta-theory faciliates a broader development
accounting for: effect combination (Hyland et al., 2006), extended program logics (Plotkin
& Pretnar, 2008; Pretnar, 2010), effect-dependent program transformations (Kammar &
Plotkin, 2012; Kammar, 2014), monadic lifting of logical relations (Katsumata, 2013), de-
pendent types (Ahman et al., 2016) and refinement types (Ahman, 2013), and normalization-
by-evaluation (Ahman & Staton, 2013).

Programming with algebraic effects and handlers. Several researchers simultaneously
advocated the use of the handler programming abstraction. In analogy with Wadler’s (1992)
use of monads to structure imperative functional programming, Bauer & Pretnar (2015) ad-
vocate a similar use of algebraic effects and handlers in the programming language Eff, an
ML-style language with type inference (Pretnar, 2014). Kiselyov et al. (2013) and Kiselyov
& Ishii (2015) implement an effect handlers library for Haskell, based on Cartwright &
Felleisen’s (1994) work on extensible denotational semantics and interpreters. Kammar
et al. (2013), in addition to Haskell implementations based on continuations and free
monads (Swierstra, 2008; Hancock & Setzer, 2000), implement handler libraries in OCaml,
Standard-ML, and Racket, and give a sound small-step operational semantics for a core
calculus of handlers with local effect signatures, which underlies the semantics we give

24 O. Kammar and M. Pretnar

here. Handlers integrate smoothly with other program features: Brady’s (2013, 2014) effect
handler library in the Idris language uses dependent-types to reason about effectful code,
and Saleh & Schrijvers (2016) add effect handlers to the Prolog language as a high-
level alternative to delimited control. Wu et al. (2014) propose a generalisation to effect
handlers that allows scoped effects, which seems to increase their expressiveness. While
we deal with the semantic foundations of handlers, there is ongoing investigation into their
implementation. Wu & Schrijvers (2015) analyse and explain the runtime efficiency of
implementation techniques for effect handlers, and in particular, free monads. The Koka
language of Leijen (2014, 2017) offers run-time and compilation support for algebraic
effects and handlers, using a selective continuation-passing-style transformation. McBride
investigates untyped effect handlers through the Shonky language3 and variations on poly-
morphic effect systems through the Frank language (Lindley et al., 2017). Dolan, White,
Sivaramakrishnan, Yallop, and Madhavapeddy recently propose4 a language and runtime
extension to the OCaml language to support algebraic effects.

Delimited control. We also view handlers as a delimited control operator. Felleisen (1988)
first introduces control delimiters as a mechanism for improving the meta-theory of control
operators. Early on (Felleisen et al., 1988), they were used to implement algorithms with
sophisticated control structure, such as tree-fringe comparison, and other control mecha-
nisms, such as coroutines. Danvy & Filinski (1990) study control operators systematically
using continuation-passing-style conversion, and introduce a hierarchy of control opera-
tors, including the operators shift and shift0, the latter being the traditional control operator
deep handlers are closest to. Danvy & Filinski (1989) give the first well-known type system
for delimited control. The different variations in control structure and the desire to relax
the type system to accept more sophisticated programs involving answer-type modification,
lead to a plethora of type systems for delimited control, and Kiselyov & Shan (2007) give
a substantial list of references. The most relevant to this work are the polymorphic type
systems of Gunter et al. (1995); Kiselyov et al. (2006); and Asai & Kameyama (2007).
The expressive relationship between different delimited control constructs is subtle, and
Shan (2007) establishes some untyped relationships using Felleisen’s (1991) notion of
macro expressibility. In collaboration with Forster et al. (2016), we similarly investigate the
expressiveness of handlers with delimited control and monadic reflection. Danvy (2006)
and Kiselyov et al. (2006) show how delimited control operators can simulate global state
and Moreau’s (1998) notion of dynamically scoped state, respectively, on which we base
our characterisation of the HST handler.

Expressing recursion with delimited control. The ability to encode Landin’s (1964)
knot, while possible with handlers and coarse type annotation, is already recurrent in
the study of control operators. Lillibridge (1999) shows unchecked exceptions are Turing-
complete by defining the Y-combinator. Filinski’s (1994) type system for shift and reset
fixes the answer type, and it is well-known folklore that if the answer type is a function

3
https://github.com/pigworker/shonky

4 Talk given at the OCaml Workshop 2015.

https://github.com/pigworker/shonky

No value restriction is needed for algebraic effects and handlers 25

type, the calculus is non-terminating. Consequently, Filinski’s continuation-passing-style
translation into the simply typed lambda calculus requires recursive types. Kameyama &
Yonezawa’s (2008) simple type system for Felleisen’s (1988) delimited-control operators
control and prompt can similarly tie the knot.

6 Conclusion and further work

Unexpectedly, Hindley-Milner polymorphism integrates smoothly and robustly with exist-
ing type-and-effect systems for algebraic effects and handlers. However, combining refer-
ence cell allocation with polymorphism remains an open problem, as does incorporating
dynamic generation of instances as used in Eff . Consequently, Eff still uses the value
restriction. Our contribution is to identify a larger class of languages in which effects and
polymorphism coexist naturally.

For type-system cognoscenti, these results may not come as a complete surprise. First,
using effect systems to ensure soundness has been proposed (Leroy & Weis, 1991) before
Wright’s value restriction. Second, even if we consider the non-effect-annotated safety
result, we do not believe the type system can encode the problematic effects: local ref-
erence cells and continuations. Nonetheless, previous solutions require a specialised, and
sometimes subtle, type system. In the algebraic setting, adding polymorphism to existing
systems is strikingly natural.

There is an intuitive explanation for polymorphism-by-name and the value restriction
using an analogy between the polymorphic type abstraction operation, i.e. Λ in System
F (Girard, 1972; Reynolds, 1974), and the function abstraction operation, i.e., λ in the
λ -calculus, which is already present in, e.g. Leroy (1992, 1993); Cardelli (1991); Gifford
& Lucassen (1986); Wright (1995); and Harper & Lillibridge (1993a). By elaborating the
types of bound variables and inserting an explicit type abstraction operation to the example
in the introduction, we get:

let id = Λα.(fun f ∶ (α → α)→ α → α ↦ f) (fun x ∶ α ↦ x) in (∗∀α.α → α∗)
id (id)

The λ -abstraction operation suspends computation in the λ -calculus, and so, by analogy,
we may choose to suspend computation under Λ-abstraction as well. Doing so results in
Leroy’s polymorphism by name. If we want to keep a call-by-value evaluation order on
polymorphic let and treat Λ as computation suspending, the value restriction is the natural
solution.

However, Garrigue’s relaxation of the value restriction and its implementation in OCaml
show that programmers are interested in separating suspension of computation from type
abstraction, departing from the behaviour for function abstraction. Moreover, Levy’s (2004)
call-by-push-value shows that functional calculi for effects, and their resulting equational
theories, benefit from a lingual separation between suspension of computation, i.e., thunk-
ing, and functional abstraction. In this situation, we are interested to know how to integrate
call-by-value polymorphism with effects.

An anonymous reviewer suggests the following intuition to our result in terms of shar-
ing (Leroy, 1992). Reference cells allow creating some shared state without exposing its
type in the shared context. As a result, without the value restriction, it becomes possible

26 O. Kammar and M. Pretnar

to generalise this type wrongly. In contrast, our type system is fully explicit. Any state
manipulation, and more generally, any effect manipulation, is through the handlers via the
operation signatures, whose types are either declared globally (in the coarser system) or
explicitly. The cause for this explicitness is clear: unlike state manipulation operations for
reference cells whose meaning is fixed, algebraic effect operations are decoupled from their
concrete semantics. Thus we need to track types explicitly so that the enclosing handler
uses the correct types. As a consequence, the hidden sharing is lost, and there is no need
to restrict polymorphism. But by losing the ability to hide shared state, we can no longer
easily express reference cells.

We have also shown formally that the ‘local’ state handler HST simulates dynamically
scoped state. In particular, our type-preserving translation establishes that, like algebraic
effects, dynamically scoped state does not need a value restriction. We contrast this result
with one of Wright’s motivations for the value restriction — providing a safe type system
for an imperative language with no additional annotation on function types. Therefore, as
far as dynamically scoped state is concerned, the unannotated polymorphic calculus for
effect handlers demonstrates there is no need for the value restriction to achieve Wright’s
goal.

These results arose as part of a broader (denotational) semantic investigation of effects
and polymorphism, which does not yet account for reference cells. We hope that an al-
gebraic understanding of locality (Staton, 2013b; Fiore & Staton, 2014) and scope and
polymorphic arities (Wu et al., 2014) will explain the interaction between reference cells
and polymorphism. As mentioned in the end of Sec. 3, our proof easily adapts to the
presence of effect instances, though only for global signatures. The question of how to
combine effect instances with local annotations is still open, and will most likely also
be answered by understanding locality. The robustness of type safety leads us to believe
standard extensions, such as type inference, principal types, and impredicative and row
polymorphism will not pose problems. The latter is particularly interesting, as it can serve
as an effect system with effect variables (Lindley & Cheney, 2012; Hillerström & Lindley,
2016; Leijen, 2014; Pretnar, 2014).

We want to investigate the expressive difference between effect handlers and delimited
control, and polymorphism forms another comparison axis. We defer a thorough com-
parison, as there are several notions of delimited control (shift, shift0, with or without
answer-type modification) and several proposals for polymorphic type systems (Asai &
Kameyama, 2007; Gunter et al., 1995; Kiselyov et al., 2006), and as delimited control is
subtle. That said, there are two immediate points of comparison between delimited control
and effect handlers.

First, Kiselyov et al.’s translation of dynamic scope into delimited control requires some
complication in order to preserve types. This complication is caused by their effect system
for delimited control tracking the return type of the computation enclosed by the nearest
rebinding. When an access to a dynamically scoped cell escapes the current binding in
scope, the type expected in the nearest rebinding may change, resulting in a type error
of their translated program. The example on page 16 demonstrates such a shift from a
function type to an integer type. In contrast, our effect system only tracks the local type for
each effect operation, and the translation from dynamically scoped state to effect handlers
extends smoothly to types.

* 27

Second, these systems include a form of a purity restriction or value restriction. As a
consequence, they cannot type purely functional computations like the final example in
Subsection 4.1. In contrast, the type system proposed here allows unrestricted Hindley-
Milner polymorphism in both purely functional and effectful code.

Acknowledgements. We thank Alex Simpson for conjecturing the value restriction may
not be necessary for algebraic effects. We also thank the Journal of Functional Program-
ming editors Matthias Felleisen, François Pottier, and Jeremy Gibbons, and the anonymous
referees, whose hard work improved this article considerably. We also thank Andrej Bauer,
Xavier Leroy, Sam Lindley, Sean Moss, Dominic Mulligan, Jean Pichon-Pharabod, Andy
Pitts, Didier Rémy, Philip Wadler, and Jeremy Yallop for many useful suggestions and
discussions.

Bibliography

Ahman, Danel. (2013). Refinement types and algebraic effects. 2nd Workshop on Higher-
Order Programming with Effects, HOPE 2013.

Ahman, Danel, & Staton, Sam. (2013). Normalization by evaluation and algebraic effects.
Electr. notes theor. comput. sci., 298, 51–69.

Ahman, Danel, Ghani, Neil, & Plotkin, Gordon D. (2016). Dependent types and fibred
computational effects. Pages 36–54 of: Jacobs, Bart, & Löding, Christof (eds),
Foundations of Software Science and Computation Structures - 19th International
Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9634. Springer.

Appel, Andrew W., & MacQueen, David B. (1991). Standard ML of New Jersey. Pages
1–13 of: PLILP.

Asai, Kenichi, & Kameyama, Yukiyoshi. (2007). Polymorphic delimited continuations.
Pages 239–254 of: APLAS. Lecture Notes in Computer Science, vol. 4807. Springer.

Bauer, Andrej, & Pretnar, Matija. (2014). An effect system for algebraic effects and
handlers. Logical methods in computer science, 10(4).

Bauer, Andrej, & Pretnar, Matija. (2015). Programming with algebraic effects and
handlers. J. log. algebr. meth. program., 84(1), 108–123.

Benton, Nick, Kennedy, Andrew, & Russell, George. (1998). Compiling Standard ML
to Java Bytecodes. Pages 129–140 of: Felleisen, Matthias, Hudak, Paul, & Queinnec,
Christian (eds), Proceedings of the third ACM SIGPLAN International Conference on
Functional Programming (ICFP ’98), Baltimore, Maryland, USA, September 27-29,
1998. ACM.

Brady, Edwin. (2013). Programming and reasoning with algebraic effects and dependent
types. Pages 133–144 of: Morrisett, Greg, & Uustalu, Tarmo (eds), ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013. ACM.

Brady, Edwin. (2014). Resource-dependent algebraic effects. Pages 18–33 of: Hage,
Jurriaan, & McCarthy, Jay (eds), Trends in Functional Programming - 15th International
Symposium, TFP 2014, Soesterberg, The Netherlands, May 26-28, 2014. Revised
Selected Papers. Lecture Notes in Computer Science, vol. 8843. Springer.

28 O. Kammar and M. Pretnar

Cardelli, Luca. (1991). Typeful programming. Pages 431–507 of: Neuhold, E. J., & Paul,
M. (eds), Formal Description of Programming Concepts. Berlin: Springer-Verlag.

Cardelli, Luca, & Mitchell, John C. (1991). Operations on records. Mathematical
structures in computer science, 1(1), 3–48.

Cartwright, Robert, & Felleisen, Matthias. (1994). Extensible denotational language
specifications. Pages 244–272 of: Hagiya, Masami, & Mitchell, John C. (eds),
Theoretical Aspects of Computer Software, International Conference TACS ’94, Sendai,
Japan, April 19-22, 1994, Proceedings. Lecture Notes in Computer Science, vol. 789.
Springer.

Cooper, Ezra, Lindley, Sam, Wadler, Philip, & Yallop, Jeremy. (2006). Links: Web
programming without tiers. Pages 266–296 of: de Boer, Frank S., Bonsangue,
Marcello M., Graf, Susanne, & de Roever, Willem P. (eds), Formal Methods for
Components and Objects, 5th International Symposium, FMCO 2006, Amsterdam, The
Netherlands, November 7-10, 2006, Revised Lectures. Lecture Notes in Computer
Science, vol. 4709. Springer.

Danvy, Olivier. (2006). An analytical approach to programs as data objects. DSc
dissertation, Department of Computer Science, University of Aarhus.

Danvy, Olivier, & Filinski, Andrzej. (1989). A functional abstraction of typed contexts.
Tech. rept. 89/12. DIKU.

Danvy, Olivier, & Filinski, Andrzej. (1990). Abstracting control. Pages 151–160 of: LISP
and Functional Programming.

Felleisen, Matthias. (1988). The theory and practice of first-class prompts. Pages 180–190
of: Ferrante, Jeanne, & Mager, P. (eds), Conference Record of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, San Diego, California, USA,
January 10-13, 1988. ACM Press.

Felleisen, Matthias. (1991). On the expressive power of programming languages. Sci.
comput. program., 17(1-3), 35–75.

Felleisen, Matthias, Wand, Mitchell, Friedman, Daniel P., & Duba, Bruce F. (1988).
Abstract continuations: A mathematical semantics for handling full jumps. Pages 52–62
of: LISP and Functional Programming.

Filinski, Andrzej. (1994). Representing monads. Pages 446–457 of: Boehm, Hans-Juergen,
Lang, Bernard, & Yellin, Daniel M. (eds), Conference Record of POPL’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland,
Oregon, USA, January 17-21, 1994. ACM Press.

Fiore, Marcelo P., & Staton, Sam. (2014). Substitution, jumps, and algebraic effects. Pages
41:1–41:10 of: CSL-LICS. ACM.

Forster, Yannick, Kammar, Ohad, Lindley, Sam, & Pretnar, Matija. (2016). On the
expressive power of user-defined effects: Effect handlers, monadic reflection, delimited
control. Corr, abs/1610.09161.

Garrigue, Jacques. (2001). Simple type inference for structural polymorphism. Pages
329–343 of: The Second Asian Workshop on Programming Languages and Systems,
APLAS’01, Korea Advanced Institute of Science and Technology, Daejeon, Korea,
December 17-18, 2001, Proceedings.

Garrigue, Jacques. (2004). Relaxing the value restriction. Pages 196–213 of: FLOPS.
Lecture Notes in Computer Science, vol. 2998. Springer.

* 29

Garrigue, Jacques. (2010). A certified implementation of ML with structural
polymorphism. Pages 360–375 of: Ueda, Kazunori (ed), Programming Languages
and Systems - 8th Asian Symposium, APLAS 2010, Shanghai, China, November 28
- December 1, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6461.
Springer.

Garrigue, Jacques. (2015). A certified implementation of ML with structural
polymorphism and recursive types. Mathematical structures in computer science, 25(4),
867–891.

Gifford, David K., & Lucassen, John M. (1986). Integrating functional and imperative
programming. Pages 28–38 of: LISP and Functional Programming.

Girard, Jean-Yves. 1972 (June). Interprétation fonctionnelle et Élimination des coupures
de l’arithmétique d’ordre supérieur. Thèse de doctorat d’état, Université Paris VII.

Gordon, Andrew D. (ed). (2017). Fourty-fourth annual ACM symposium on principles of
programming languages, paris, france, to appear. ACM Press.

Gordon, Michael J. C., Milner, Robin, & Wadsworth, Christopher P. (1979). Edinburgh
LCF. Lecture Notes in Computer Science, vol. 78. Springer.

Gunter, Carl A., Rémy, Didier, & Riecke, Jon G. (1995). A generalization of exceptions
and control in ML-like languages. Pages 12–23 of: FPCA. ACM.

Hancock, Peter, & Setzer, Anton. (2000). Interactive programs in dependent type theory.
Pages 317–331 of: Clote, Peter, & Schwichtenberg, Helmut (eds), Computer Science
Logic, 14th Annual Conference of the EACSL, Fischbachau, Germany, August 21-26,
2000, Proceedings. Lecture Notes in Computer Science, vol. 1862. Springer.

Harper, Robert, & Lillibridge, Mark. (1993a). Explicit polymorphism and CPS conversion.
Pages 206–219 of: Deusen, Mary S. Van, & Lang, Bernard (eds), Conference
Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, South Carolina, USA, January 1993. ACM Press.

Harper, Robert, & Lillibridge, Mark. (1993b). Polymorphic type assignment and CPS
conversion. Lisp and symbolic computation, 6(3-4), 361–380.

Harper, Robert, & Mitchell, John C. (1993). On the type structure of standard ML. ACM
trans. program. lang. syst., 15(2), 211–252.

Harper, Robert, & Pierce, Benjamin C. (1991). A record calculus based on symmetric
concatenation. Pages 131–142 of: Wise, David S. (ed), Conference Record of
the Eighteenth Annual ACM Symposium on Principles of Programming Languages,
Orlando, Florida, USA, January 21-23, 1991. ACM Press.

Hillerström, Daniel, & Lindley, Sam. (2016). Liberating effects with rows and handlers.
Pages 15–27 of: Chapman, James, & Swierstra, Wouter (eds), Proceedings of the 1st
International Workshop on Type-Driven Development, September 2016. ACM.

Hyland, Martin, Plotkin, Gordon D., & Power, John. (2006). Combining effects: Sum and
tensor. Theor. comput. sci., 357(1-3), 70–99.

Jaber, Guilhem, & Tzevelekos, Nikos. (2016). Trace semantics for polymorphic references.
Corr, abs/1602.08406.

Kameyama, Yukiyoshi, & Yonezawa, Takuo. (2008). Typed dynamic control operators
for delimited continuations. Pages 239–254 of: Garrigue, Jacques, & Hermenegildo,
Manuel V. (eds), Functional and Logic Programming, 9th International Symposium,
FLOPS 2008, Ise, Japan, April 14-16, 2008. Proceedings. Lecture Notes in Computer
Science, vol. 4989. Springer.

30 O. Kammar and M. Pretnar

Kammar, Ohad. (2014). An algebraic theory of type-and-effect systems. Ph.D. thesis,
University of Edinburgh, UK.

Kammar, Ohad, & Plotkin, Gordon D. (2012). Algebraic foundations for effect-dependent
optimisations. Pages 349–360 of: Field, John, & Hicks, Michael (eds), Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. ACM.

Kammar, Ohad, Lindley, Sam, & Oury, Nicolas. (2013). Handlers in action. Pages 145–
158 of: ICFP. ACM.

Katsumata, Shin-ya. (2013). Relating computational effects by ⊤⊤-lifting. Inf. comput.,
222, 228–246.

Katsumata, Shin-ya. (2014). Parametric effect monads and semantics of effect systems.
Pages 633–646 of: Jagannathan, Suresh, & Sewell, Peter (eds), The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014. ACM.

Kiselyov, Oleg. 2015 (September). Generating code with polymorphic let. Tech.
rept. Tohoku University, Japan. extended abstract submitted to the ACM SIGPLAN
Workshop on ML.

Kiselyov, Oleg, & Ishii, Hiromi. (2015). Freer monads, more extensible effects. Pages
94–105 of: Lippmeier, Ben (ed), Proceedings of the 8th ACM SIGPLAN Symposium on
Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015. ACM.

Kiselyov, Oleg, & Shan, Chung-chieh. (2007). A substructural type system for delimited
continuations. Pages 223–239 of: Rocca, Simona Ronchi Della (ed), Typed Lambda
Calculi and Applications, 8th International Conference, TLCA 2007, Paris, France, June
26-28, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4583. Springer.

Kiselyov, Oleg, Shan, Chung-chieh, & Sabry, Amr. (2006). Delimited dynamic binding.
Pages 26–37 of: ICFP. ACM.

Kiselyov, Oleg, Sabry, Amr, & Swords, Cameron. (2013). Extensible effects: an alternative
to monad transformers. Pages 59–70 of: Haskell. ACM.

Landin, P. J. (1964). The mechanical evaluation of expressions. The computer journal,
6(4), 308–320.

Leijen, Daan. (2014). Koka: Programming with row polymorphic effect types. Pages
100–126 of: MSFP. EPTCS, vol. 153.

Leijen, Daan. (2017). Type directed compilation of row-typed algebraic effects. In: Gordon
(2017).

Lepigre, Rodolphe. (2016). A classical realizability model for a semantical value
restriction. Pages 476–502 of: Thiemann, Peter (ed), Programming Languages and
Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9632. Springer.

Leroy, Xavier. (1992). Typage polymorphe d’un langage algorithmique. PhD thesis (in
French), Université Paris 7.

Leroy, Xavier. (1993). Polymorphism by name for references and continuations. Pages
220–231 of: POPL. ACM Press.

Leroy, Xavier, & Weis, Pierre. (1991). Polymorphic type inference and assignment. Pages
291–302 of: POPL. ACM Press.

* 31

Levy, Paul B. (2004). Call-by-push-value: A functional/imperative synthesis. Semantics
Structures in Computation, vol. 2. Springer.

Levy, Paul Blain, Power, John, & Thielecke, Hayo. (2003). Modelling environments in
call-by-value programming languages. Inf. comput., 185(2), 182–210.

Lillibridge, Mark. (1999). Unchecked exceptions can be strictly more powerful than
call/cc. Higher-order and symbolic computation, 12(1), 75–104.

Lindley, Sam, & Cheney, James. (2012). Row-based effect types for database integration.
Pages 91–102 of: TLDI. ACM.

Lindley, Sam, McBride, Conor, & McLaughlin, Craig. (2017). Do be do be do. In: Gordon
(2017).

Lippmeier, Ben. (2009). Witnessing purity, constancy and mutability. Pages 95–110
of: Hu, Zhenjiang (ed), Programming Languages and Systems, 7th Asian Symposium,
APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings. Lecture Notes in
Computer Science, vol. 5904. Springer.

Lucassen, John M., & Gifford, David K. (1988). Polymorphic effect systems. Pages 47–57
of: POPL. ACM Press.

Marino, Daniel, & Millstein, Todd D. (2009). A generic type-and-effect system. Pages 39–
50 of: Kennedy, Andrew, & Ahmed, Amal (eds), Proceedings of TLDI’09: 2009 ACM
SIGPLAN International Workshop on Types in Languages Design and Implementation,
Savannah, GA, USA, January 24, 2009. ACM.

Melliès, Paul-André. (2010). Segal condition meets computational effects. Pages 150–159
of: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom. IEEE Computer Society.

Melliès, Paul-André. (2014). Local states in string diagrams. Pages 334–348 of: Dowek,
Gilles (ed), Rewriting and Typed Lambda Calculi - Joint International Conference, RTA-
TLCA 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 14-17, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8560. Springer.

Milner, Robin. (1978). A theory of type polymorphism in programming. J. comput. syst.
sci., 17(3), 348–375.

Moggi, Eugenio. (1991). Notions of computation and monads. Inf. comput., 93(1), 55–92.
Moreau, Luc. (1998). A syntactic theory of dynamic binding. Higher-order and symbolic

computation, 11(3), 233–279.
Munch-Maccagnoni, Guillaume. (2009). Focalisation and classical realisability. Pages

409–423 of: Grädel, Erich, & Kahle, Reinhard (eds), Computer Science Logic ’09.
Lecture Notes in Computer Science, vol. 5771. Springer, Heidelberg.

Nielson, Flemming, & Nielson, Hanne Riis. (1999). Type and effect systems. Pages 114–
136 of: Olderog, Ernst-Rüdiger, & Steffen, Bernhard (eds), Correct System Design,
Recent Insight and Advances, (to Hans Langmaack on the occasion of his retirement
from his professorship at the University of Kiel). Lecture Notes in Computer Science,
vol. 1710. Springer.

Ohori, Atsushi. (1989). A simple semantics for ML polymorphism. Pages 281–
292 of: Stoy, Joseph E. (ed), Proceedings of the fourth international conference on
Functional programming languages and computer architecture, FPCA 1989, London,
UK, September 11-13, 1989. ACM.

Ohori, Atsushi. (1992). A compilation method for ML-style polymorphic record calculi.
In: Sethi (1992).

32 O. Kammar and M. Pretnar

Ohori, Atsushi. (1995). A polymorphic record calculus and its compilation. ACM trans.
program. lang. syst., 17(6), 844–895.

Pfenning, Frank, & Schürmann, Carsten. (1999). System description: Twelf - A meta-
logical framework for deductive systems. Pages 202–206 of: CADE. Lecture Notes in
Computer Science, vol. 1632. Springer.

Pierce, Benjamin C. (2002). Types and programming languages. Cambridge, MA, USA:
MIT Press.

Pitts, Andrew M. (2011–2016). Types. Lecture notes. University of Cambridge Computer
Laboratory.

Plotkin, Gordon D. (1977). LCF considered as a programming language. Theor. comput.
sci., 5(3), 223–255.

Plotkin, Gordon D., & Power, John. (2002). Notions of computation determine monads.
Pages 342–356 of: Nielsen, Mogens, & Engberg, Uffe (eds), Foundations of Software
Science and Computation Structures, 5th International Conference, FOSSACS 2002.
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings. Lecture Notes in
Computer Science, vol. 2303. Springer.

Plotkin, Gordon D., & Power, John. (2003). Algebraic operations and generic effects.
Applied categorical structures, 11(1), 69–94.

Plotkin, Gordon D., & Pretnar, Matija. (2008). A logic for algebraic effects. Pages 118–
129 of: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer
Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA. IEEE Computer Society.

Plotkin, Gordon D., & Pretnar, Matija. (2013). Handling algebraic effects. Logical methods
in computer science, 9(4).

Pretnar, Matija. (2010). Logic and handling of algebraic effects. Ph.D. thesis, University
of Edinburgh, UK.

Pretnar, Matija. (2014). Inferring algebraic effects. Logical methods in computer science,
10(3).

Pretnar, Matija. (2015). An introduction to algebraic effects and handlers. invited tutorial
paper. Electr. notes theor. comput. sci., 319, 19–35.

Rémy, Didier. (1990). Algèbres touffues. application au typage polymorphe des objets
enregistrements dans les langages fonctionnels. Thèse de doctorat, Université de Paris 7.

Rémy, Didier. 1991 (May). Type inference for records in a natural extension of ML.
Research Report 1431. Institut National de Recherche en Informatique et Automatisme,
Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France.

Rémy, Didier. (2015). Type systems. Lecture notes. Parisian Master of Research in
Computer Science.

Reynolds, John C. (1974). Towards a theory of type structure. Pages 408–423 of:
Programming Symposium, Proceedings Colloque Sur La Programmation. London, UK,
UK: Springer-Verlag.

Reynolds, John C. (1984). Polymorphism is not set-theoretic. Pages 145–156 of: Kahn,
Gilles, MacQueen, David B., & Plotkin, Gordon D. (eds), Semantics of Data Types,
International Symposium, Sophia-Antipolis, France, June 27-29, 1984, Proceedings.
Lecture Notes in Computer Science, vol. 173. Springer.

* 33

Rompf, Tiark, Maier, Ingo, & Odersky, Martin. (2009). Implementing first-class
polymorphic delimited continuations by a type-directed selective cps-transform. Pages
317–328 of: Hutton, Graham, & Tolmach, Andrew P. (eds), Proceeding of the 14th
ACM SIGPLAN international conference on Functional programming, ICFP 2009,
Edinburgh, Scotland, UK, August 31 - September 2, 2009. ACM.

Saleh, Amr Hany, & Schrijvers, Tom. (2016). Efficient algebraic effect handlers for prolog.
Corr, abs/1608.00816.

Scott, Dana S. (1993). A type-theoretical alternative to ISWIM, CUCH, OWHY. Theor.
comput. sci., 121(1&2), 411–440.

Sethi, Ravi (ed). (1992). Conference record of the nineteenth annual ACM SIGPLAN-
SIGACT symposium on principles of programming languages, albuquerque, new mexico,
usa, january 19-22, 1992. ACM Press.

Shan, Chung-chieh. (2007). A static simulation of dynamic delimited control. Higher-
order and symbolic computation, 20(4), 371–401.

Staton, Sam. (2009). Two cotensors in one: Presentations of algebraic theories for local
state and fresh names. Electr. notes theor. comput. sci., 249, 471–490.

Staton, Sam. (2010). Completeness for algebraic theories of local state. Pages 48–63 of:
Ong, C.-H. Luke (ed), Foundations of Software Science and Computational Structures,
13th International Conference, FOSSACS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March
20-28, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6014. Springer.

Staton, Sam. (2013a). An algebraic presentation of predicate logic - (extended abstract).
Pages 401–417 of: Pfenning, Frank (ed), Foundations of Software Science and
Computation Structures - 16th International Conference, FOSSACS 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings. Lecture Notes in Computer Science, vol.
7794. Springer.

Staton, Sam. (2013b). Instances of computational effects: An algebraic perspective. Page
519 of: LICS. IEEE Computer Society.

Staton, Sam. (2015). Algebraic effects, linearity, and quantum programming languages.
Pages 395–406 of: Rajamani, Sriram K., & Walker, David (eds), Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015. ACM.

Swierstra, Wouter. (2008). Data types à la carte. J. funct. program., 18(4), 423–436.
Tofte, Mads. (1990). Type inference for polymorphic references. Inf. comput., 89(1), 1–34.
Tolmach, Andrew P. (1998). Optimizing ML using a hierarchy of monadic types. Pages

97–115 of: Leroy, Xavier, & Ohori, Atsushi (eds), Types in Compilation, Second
International Workshop, TIC ’98, Kyoto, Japan, March 25-27, 1998, Proceedings.
Lecture Notes in Computer Science, vol. 1473. Springer.

Wadler, Philip. (1992). The essence of functional programming. In: Sethi (1992).
Wadler, Philip, & Thiemann, Peter. (2003). The marriage of effects and monads. ACM

trans. comput. log., 4(1), 1–32.
Wand, Mitchell. (1987). Complete type inference for simple objects. Pages 37–44 of:

Proceedings of the Symposium on Logic in Computer Science (LICS ’87), Ithaca, New
York, USA, June 22-25, 1987. IEEE Computer Society.

34 O. Kammar and M. Pretnar

Wells, J. B. (1999). Typability and type checking in System F are equivalent and
undecidable. Ann. pure appl. logic, 98(1-3), 111–156.

Wright, Andrew K. (1995). Simple imperative polymorphism. Lisp and symbolic
computation, 8(4), 343–355.

Wu, Nicolas, & Schrijvers, Tom. (2015). Fusion for free - efficient algebraic effect
handlers. Pages 302–322 of: Hinze, Ralf, & Voigtländer, Janis (eds), Mathematics
of Program Construction - 12th International Conference, MPC 2015, Königswinter,
Germany, June 29 - July 1, 2015. Proceedings. Lecture Notes in Computer Science, vol.
9129. Springer.

Wu, Nicolas, Schrijvers, Tom, & Hinze, Ralf. (2014). Effect handlers in scope. Pages 1–12
of: Haskell. ACM.

Zeilberger, Noam. (2009). Refinement types and computational duality. Pages 15–26 of:
Altenkirch, Thorsten, & Millstein, Todd D. (eds), Proceedings of the 3rd ACM Workshop
Programming Languages meets Program Verification, PLPV 2009, Savannah, GA, USA,
January 20, 2009. ACM.

	Introduction
	Handlers of algebraic effects
	Language
	State handlers
	Operational semantics

	Type system
	Expressiveness
	Evaluation
	Reference cells
	Dynamically scoped state

	Related work
	Conclusion and further work

